THERMODYNAMIC PARAMETERS OF *p*-CHLORO-BENZOYL-ACETONE COMPLEXES FROM A TEMPERATURE VARIATION STUDY

MUKTA SHARMA, PAVAN MATHUR *, K.B. PANDEYA and R.P. SINGH Department of Chemistry, University of Delhi, Delhi 110 007 (India) (Received 18 December 1984)

ABSTRACT

The interactions of certain transition metal ions: Cu(II), Fe(II), Co(II), Cd(II), Ni(II), Zn(II) and Mn(II) with *p*-chloro-benzoylacetone (*p*-CBA) have been studied pH-metrically in a 75% dioxane-water medium at different temperatures and 0.1 M (NaClO₄) ionic strength. The order of stability constants was found to be: Cd(II) < Mn(II) < Co(II) < Zn(II) < Ni(II) < Fe(II) < Cu(II).

Thermodynamic parameters (ΔG , ΔH and ΔS) have been calculated at 30°C, maintaining 0.1 M ionic strength. These values show that the interaction between *p*-CBA and the metal ions is a chelation reaction between ionic species. The entropy change plays an important role in stabilising the complexes.

INTRODUCTION

The presence of β -carbonyl groups with at least one proton on the carbon between the two groups allows a keto \rightleftharpoons enol tautomerism [1] to occur. Under appropriate conditions, the enolic proton [2] (Fig. 1) can be removed. The compounds which form when the proton is replaced by a metal ion are metal β -ketoenolate complexes.

 β -Diketones are amongst the most versatile and commonly employed chelating agents in the solvent extraction of lanthanides and actinides. The formation constants of these complexes can indicate the relative ease of solvent extraction. Therefore, one of the widely explored areas of metal β -ketoenolate chemistry is that dealing with stability constant measurements.

The present paper deals with the potentiometric determination of stability constants and thermodynamic parameters of the complexes of bivalent metal ions with a β -diketone derived from benzoylacetone.

^{*} Ramjas College, University of Delhi, Delhi 110 007, India.

Fig. 1. Keto-enol tautomerism in β -diketones.

EXPERIMENTAL

p-Chloroacetophenone (20 g) was added to 200 ml of absolute ether and 2.5 g of sodium metal. Ethyl acetate (22 g) was then added and the reaction mixture was cooled. On completion of the reaction, the mixture was heated on a water bath for about 2 h and then filtered. The residue was dissolved in water and acidified with acetic acid. White crystals were obtained, which were recrystallised from boiling alcohol. The purity of *p*-chloro-benzoylacetone (*p*-CBA) (Fig. 2) was checked by TLC and elemental analysis.

The ligand solution was prepared in dioxane, purified by the method given in the literature [3]. The medium of titration was 75:25 (v/v) dioxane-water mixture. All the metal ion solutions were prepared from their sulphates (BDH, AnalaR). The titrant was a 0.04 M solution of tetramethyl ammonium hydroxide (TMAH) (Merck) in 75% aqueous dioxane (v/v), standardized with a standard solution of oxalic acid. Sodium perchlorate was used to maintain a constant ionic strength. All other reagents were prepared from reagent grade chemicals. An Ecil digital pH-meter (model pH 5651), with a combined electrode of 0–14 pH range, was used for pH measurements.

The stoichiometry of the complexes was ascertained by potentiometric titration. The Bjerrum-Calvin [4,5] pH titration technique, as modified by Irving-Rossotti [6,7], was followed to determine the proton-ligand and the metal-ligand formation constants. For this, the following three solutions, keeping the total volume to 20 ml, were titrated against TMAH at 18, 30, 40 and 50°C.

(i) $3.0 \text{ ml HClO}_4 (0.02 \text{ M}) + 1.0 \text{ ml NaClO}_4 (2.0 \text{ M}) + 0.5 \text{ ml K}_2 \text{SO}_4 (0.02 \text{ M}) + 15 \text{ ml dioxane} + 0.5 \text{ ml H}_2 \text{O}.$

(ii) 3.0 ml HClO₄ (0.02M) + 1.0 ml NaClO₄ (2.0 M) + 0.5 ml K₂SO₄ (0.02 M) + 10 ml ligand (0.01 M) + 5 ml dioxane + 0.5 ml H₂O.

(iii) 3.0 ml HClO₄ (0.02 M) + 1.0 ml NaClO₄ (2.0 M) + 0.5 ml metal salt solution (0.02 M) + 10 ml ligand (0.01 M) + 5 ml dioxane + 0.5 ml H₂O.

Fig. 2. p-CBA.

In all cases corrections for the change in volume on mixing dioxane and water were made (total volume = 19.67 ml).

RESULTS AND DISCUSSION

The p K_a values were obtained from the plot of $\log(\frac{n_H}{1-\overline{n}_H})$ versus pH. The values obtained are given in Table 1.

The benzoylacetone radical is univalent so the number of these groups combining with a metal atom will depend upon the principal valency of this atom. Since each benzoylacetone group is equivalent to two associating units it follows that the benzoylacetonates of bivalent metals will be characterised by a molecular arrangement of four points on the sphere of influence of the metallic atom. After complexation a stable six-membered ring is formed and the metal atom serves as the connecting link between the ends of the organic group (the two oxygen atoms).

Thus, the maximum value of \bar{n} obtained should be ~ 2, indicating the formation of 1:2 complexes because one replaceable hydrogen is present per ligand molecule. In the present study of bivalent metal complexes, the values of \bar{n} obtained are also ~ 2.

 β_n values have been computed from the values of \overline{n} and pL by the weighted-least-squares method of Sullivan et al. [8]. S_{\min} values have also been calculated which have the same significance as χ^2 , with K degrees of freedom. The values of stability constants obtained are given in Table 1.

The order of increasing stability constants of metal complexes is: Cd(II) < Mn(II) < Co(II) < Zn(II) < Ni(II) < Fe(II) < Cu(II).

The values of stability constants are positive in all cases and increase on decreasing temperature, which shows that a lower temperature is favourable for the formation of complexes.

Thermodynamic parameters

The values of the stepwise and overall changes in free energy (ΔG) , enthalpy (ΔH) and entropy (ΔS) of complexation reactions at 30°C and 0.1 M ionic strength were calculated by using the following well-known equations [9]

 $\Delta G = -RT \ln K$ $\frac{d \log K}{d(1/T)} = \frac{-\Delta H}{4.57}$ $\Delta S = \frac{-\Delta H - \Delta G}{T}$

The values of ΔG , ΔH and ΔS obtained are given in Table 2.

Protonati	on and stab	ility consta	ants of bival	lent metals	at differen	t temperatu	res						
Cation	Temp. 18 ⁴	c		Temp. 30	°C		Temp. 4(0°C		Temp. 50	°C		
	$\log K_1$	$\log K_2$	$\log \beta_2$	$\log K_1$	$\log K_2$	$\log \beta_2$	$\log K_1$	$\log K_2$	$\log \beta_2$	$\log K_1$	$\log K_2$	$\log \beta_2$	
+ H	10.15		and a second	9.93			9.85			9.79			
Ni ²⁺	8.4011	7.1473	15.5484	8.1335	6.3979	14.5314	8.0315	6.3497	14.3812	7.6013	6.3472	13.9485	
Mn^{2+}	7.0368	3.9945	11.0313	6.8952	3.9196	10.8148	6.7761	3.8035	10.5796	6.6046	3.6744	10.2790	
Co^{2+}	7.2465	6.521	13.7675	6.9854	6.3475	13.4229	6.7328	6.3257	13.0585	6.4799	6.1343	12.6142	
Fe ²⁺	9.2671	8.1925	17.4596	9.0578	7.9648	17.0226	8.8879	7.7398	16.6277	8.6155	7.5912	16.2067	
Cd^{2+}	6.8117	6.0579	12.8696	5.6399	5.1321	19.772	5.6213	4.9661	10.5874	5.5318	4.871	10.4028	
Zn^{2+}	8.0165	6.937	14.9535	7.8669	6.433	14.299	7.5155	6.098	13.6135	7.3124	5.4916	12.804	
Cu ²⁺	9.3601	8.2853	17.6454	9.0878	8.1577	17.2454	9.0883	7,8829	16.9712	8.7183	7.7418	16.4601	
TABLE 2 Thermody	ynamic para	imeters for	the formati	ion of <i>p</i> -CB	IA complex	tes at 30°C							
Cation	Free er	iergy chang	ge		Enthal	py change			Entropy 6	change			
						(101			(Lat IIIOI	- 4			
l	$-\Delta G_1$	1	ΔG_2	$-\Delta G$	$-\Delta H_1$	- Δ	H_2	$-\Delta H$	ΔS_1	ΔS_2	7	SI	
Ni ²⁺	11.277	8	.8709	20.148	9.14	2.21	8	12.694	7.0528	21.95	6	24.60	
Mn^{2+}	9.560	5.	.434	14.995	5.712	5.19	33	11.146	12.701	0.79	53]	12.702	
Co^{2+}	9.685	×.	.925	18.611	9.520	5.07	L	13.710	0.5445	12.69	9	16.174	
Cd ²⁺	7.819	7.	.115	14.935	4.231	5.85	80	10.080	11.841	4.14	8	16.023	
Zn^{2+}	10.907	×.	.919	19.826	9.14	2.21	1	19.041	5.831	22.13	8	2.590	
Fe^{2+}	12.559	11.	.043	23.602	7.030	7.74	15	15.758	18.247	10.88	4	25.887	
Cu ²⁺	12.600	5 11.	.311	23.9115	9.14	7.61	9	17.921	11.421	12.19	4 1	9.77	

316

TABLE 1

The thermodynamic parameters show that these reactions are exothermic. The values of enthalpy change (ΔH) are negative in all cases, indicating the release of energy during chelation. The values of entropy change (ΔS) accompanying the formation of complexes are positive. As a result of this, the entropy term strongly favours complex formation and accordingly, the chelation effect is essentially an entropy effect. The high positive values of entropy are also justified by considering the greater availability of coordination sites on these metal ions. These metal ions have vacant *d*-orbitals available for the electrons of the ligand. The values of ΔH , ΔG and ΔS are comparable [10] with other ligands having oxygen-oxygen donor sites.

ACKNOWLEDGEMENT

The authors are thankful to the University Grants Commission, New Delhi, for the award of a Junior Research Fellowship to one of them (M.S.).

REFERENCES

- 1 J.P. Fackler, Jr., Prog. Inorg. Chem., 7 (1966) 361.
- 2 G.T. Morgan and H.W. Moss, J. Chem. Soc., 105 (1914) 189.
- 3 A.I. Vogel, A Text Book of Practical Organic Chemistry, 3rd edn., Longmans, London, 1978, p. 177.
- 4 J. Bjerrum (Ed.), Metal Ammine Formation in Aqueous Solution, Haase, Copenhagen, 1941, p. 298.
- 5 H. Calvin and K.W. Wilson, J. Am. Chem. Soc., 67 (1945) 2003.
- 6 H. Irving and H.S. Rossotti, J. Chem. Soc., (1954) 2904.
- 7 H. Irving and H.S. Rossotti, J. Chem. Soc., (1953) 3397.
- 8 J.C. Sullivan, J. Rydberg and W.F. Miller, Acta Chem. Scand., 13 (1959) 2023.
- 9 K.B. Yatsimirskii and V.P. Vasi 'L' Ev, Instability Constants of Complex Compounds, Van Nostrand, New York, 1960, p. 63.
- 10 V.V. Subba Reddy, B. Sethuram and T. Navaneeth Rao, Indian J. Chem., 17A (1979) 199.